翻訳と辞書
Words near each other
・ Callander, Ontario
・ Callands, Virginia
・ Callanetics
・ Callanga
・ Callanish
・ Callanish II
・ Callanish III
・ Callanish IV
・ Callanish Stones
・ Callanish VIII
・ Callanish X
・ Callanmarca District
・ Callanthias
・ Callantsoog
・ Callanwolde Fine Arts Center
Callan–Symanzik equation
・ Callao
・ Callao (disambiguation)
・ Callao (Line B Buenos Aires Underground)
・ Callao (Line D Buenos Aires Underground)
・ Callao (Madrid Metro)
・ Callao Affair
・ Callao Cave
・ Callao District
・ Callao Man
・ Callao, Missouri
・ Callao, Utah
・ Callao, Virginia
・ Callapa
・ Callaqui


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Callan–Symanzik equation : ウィキペディア英語版
Callan–Symanzik equation

In physics, the Callan–Symanzik equation is a differential equation describing the evolution of the n-point correlation functions under variation of the energy scale at which the theory is defined and involves the beta-function of the theory and the anomalous dimensions. This equation has the following structure
:\left(beta function and \gamma the scaling of the fields.
In quantum electrodynamics this equation takes the form
:\left(electrons and photons respectively.
It was discovered independently by Curtis Callan〔C. G. Callan, Jr., ''Broken Scale Invariance in Scalar Field Theory'', Phys. Rev. D 2, 1541–1547 (1970). (APS )〕 and Kurt Symanzik〔K. Symanzik, ''Small Distance Behaviour in Field Theory and Power Counting'', Commun. math. Phys. 18, 227 (1970). (SpringerLink )〕〔K. Symanzik, ''Small-Distance-Behaviour Analysis and Wilson Expansions'', Commun. math. Phys. 23, 49 (1971). (SpringerLink )〕 in 1970. Later it was used to understand asymptotic freedom.
This equation arises in the framework of renormalization group. It is possible to treat the equation using perturbation theory.
==See also==

*Exact renormalization group equation
*Beta function

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Callan–Symanzik equation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.